skip to main content


Search for: All records

Creators/Authors contains: "Albani, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Estimating past aerosol radiative effects and their uncertainties is an important topic in climate science. Aerosol radiative effects propagate into large uncertainties in estimates of how present and future climate evolves with changing greenhouse gas emissions. A deeper understanding of how aerosols affected the atmospheric energy budget under past climates is hindered in part by a lack of relevant paleo-observations and in part because less attention has been paid to the problem. Because of the lack of information we do not seek here to determine the change in the radiative forcing due to aerosol changes but rather to estimate the uncertainties in those changes. Here we argue that current uncertainties from emission uncertainties (90 % confidence interval range spanning 2.8 W m−2) are just as large as model spread uncertainties (2.8 W m−2) in calculating preindustrial to present-day aerosol radiative effects. There are no estimates of radiative forcing for important aerosols such as wildfire and dust aerosols in most paleoclimate time periods. However, qualitative analysis of paleoclimate proxies suggests that changes in aerosols between different past climates are similar in magnitude to changes in aerosols between the preindustrial and present day; plus, there is the added uncertainty from the variability in aerosols and fires in the preindustrial. From the limited literature we crudely estimate a paleoclimate aerosol uncertainty for the Last Glacial Maximum relative to preindustrial of 4.8 W m−2, and we estimate the uncertainty in the aerosol feedback in the natural Earth system over the paleoclimate (Last Glacial Maximum to preindustrial) to be about 3.2 W m−2 K−1. In order to more accurately assess the uncertainty in historical aerosol radiative effects, we propose a new model intercomparison project, which would include multiple plausible emission scenarios tested across a range of state-of-the-art climate models over the historical period. These emission scenarios would then be compared to the available independent aerosol observations to constrain which are most probable. In addition, future efforts should work to characterize and constrain paleo-aerosol forcings and uncertainties. Careful propagation of aerosol uncertainties in the literature is required to ensure an accurate quantification of uncertainties in projections of future climate changes.

     
    more » « less
    Free, publicly-accessible full text available January 15, 2025
  2. null (Ed.)
  3. null (Ed.)
    Abstract. Even though desert dust is the most abundant aerosol bymass in Earth's atmosphere, the relative contributions of the world's majorsource regions to the global dust cycle remain poorly constrained. Thisproblem hinders accounting for the potentially large impact of regionaldifferences in dust properties on clouds, the Earth's energy balance, andterrestrial and marine biogeochemical cycles. Here, we constrain thecontribution of each of the world's main dust source regions to the globaldust cycle. We use an analytical framework that integrates an ensemble ofglobal aerosol model simulations with observationally informed constraintson the dust size distribution, extinction efficiency, and regional dustaerosol optical depth (DAOD). We obtain a dataset that constrains therelative contribution of nine major source regions to size-resolveddust emission, atmospheric loading, DAOD, concentration, and depositionflux. We find that the 22–29 Tg (1 standard error range) global loading ofdust with a geometric diameter up to 20 µm is partitioned as follows:North African source regions contribute ∼ 50 % (11–15 Tg),Asian source regions contribute ∼ 40 % (8–13 Tg), and NorthAmerican and Southern Hemisphere regions contribute ∼ 10 %(1.8–3.2 Tg). These results suggest that current models on averageoverestimate the contribution of North African sources to atmospheric dustloading at ∼ 65 %, while underestimating the contribution ofAsian dust at ∼ 30 %. Our results further show that eachsource region's dust loading peaks in local spring and summer, which ispartially driven by increased dust lifetime in those seasons. We alsoquantify the dust deposition flux to the Amazon rainforest to be∼ 10 Tg yr−1, which is a factor of 2–3 less than inferred fromsatellite data by previous work that likely overestimated dust deposition byunderestimating the dust mass extinction efficiency. The data obtained inthis paper can be used to obtain improved constraints on dust impacts onclouds, climate, biogeochemical cycles, and other parts of the Earth system. 
    more » « less
  4. null (Ed.)
    Abstract. Even though desert dust is the most abundant aerosol bymass in Earth's atmosphere, atmospheric models struggle to accuratelyrepresent its spatial and temporal distribution. These model errors arepartially caused by fundamental difficulties in simulating dust emission incoarse-resolution models and in accurately representing dust microphysicalproperties. Here we mitigate these problems by developing a new methodologythat yields an improved representation of the global dust cycle. We presentan analytical framework that uses inverse modeling to integrate an ensembleof global model simulations with observational constraints on the dust sizedistribution, extinction efficiency, and regional dust aerosol opticaldepth. We then compare the inverse model results against independentmeasurements of dust surface concentration and deposition flux and find thaterrors are reduced by approximately a factor of 2 relative to currentmodel simulations of the Northern Hemisphere dust cycle. The inverse modelresults show smaller improvements in the less dusty Southern Hemisphere,most likely because both the model simulations and the observationalconstraints used in the inverse model are less accurate. On a global basis,we find that the emission flux of dust with a geometric diameter up to 20 µm (PM20) is approximately 5000 Tg yr−1, which is greater than mostmodels account for. This larger PM20 dust flux is needed to matchobservational constraints showing a large atmospheric loading of coarsedust. We obtain gridded datasets of dust emission, vertically integratedloading, dust aerosol optical depth, (surface) concentration, and wet anddry deposition fluxes that are resolved by season and particle size. As ourresults indicate that this dataset is more accurate than current modelsimulations and the MERRA-2 dust reanalysis product, it can be used toimprove quantifications of dust impacts on the Earth system. 
    more » « less
  5. Abstract

    Mineral dust acts both as a tracer and a forcing agent of climate change. Past dust variability, imprinted in paleodust records from natural archives, offers the unique opportunity to reconstruct the global dust cycle within a range of possibilities that plausibly encompass future variations in response to climate change and land-cover and land-use changes. Dust itself has direct and indirect feedbacks on the climate system, through impacts on the atmosphere radiative budget and the carbon cycle. Starting from well-constrained reconstructions of the present and past dust cycle, we focus on quantifying dust direct impacts on the atmospheric radiation. We discuss the intrinsic effects of dust onto climate, and how changes in the global dust budget and surface conditions modulate the effective impacts on surface temperatures and precipitation. Most notably, the presence of dust tends to enhance the West African monsoon and warm the Arctic. We also highlight how different choices in terms of dust optical properties and size distributions may yield opposite results, and what are the observational constraints we can use to make an informed choice of model parameters. Finally, we discuss how dust variability might have influenced ongoing climate transitions in the past. In particular we found that a reduction in dust load, along with a reduced cryosphere cover, acted to offset Arctic warming during the deglaciation, potentially playing a role in shaping the Northern Hemisphere deglacial dynamics.

     
    more » « less
  6. Abstract

    Results are presented and compared for the Community Earth System Model version 2 (CESM2) simulations of the middle Holocene (MH, 6 ka) and Last Interglacial (LIG, 127 ka). These simulations are designated as Tier 1 experiments (midHoloceneandlig127k) for the Coupled Model Intercomparison Project phase 6 (CMIP6) and the Paleoclimate Modeling Intercomparison Project phase 4 (PMIP4). They use the low‐top, standard 1° version of CESM2 contributing to CMIP6 DECK, historical, and future projection simulations, and to other modeling intercomparison projects. ThemidHoloceneandlig127kprovide the opportunity to examine the responses in CESM2 to the orbitally induced changes in the seasonal and latitudinal distribution of insolation. The insolation anomalies result in summer warming over the Northern Hemisphere continents, reduced Arctic summer minimum sea ice, and increased areal extent of the North African monsoon. The Arctic remains warm throughout the year. These changes are greater in thelig127kthanmidHolocenesimulation. Other notable changes are reduction of the Niño3.4 variability and Drake Passage transport and a small increase in the Atlantic Meridional Overturning Circulation from thepiControltomidHolocenetolig127ksimulation. Comparisons to paleo‐data and to simulations from previous model versions are discussed. Possible reasons for mismatches with the paleo‐observations are proposed, including missing processes in CESM2, simplifications in the CMIP6 protocols for these experiments, and dating and calibration uncertainties in the data reconstructions.

     
    more » « less